
Theor Chim Acta (1986) 69:357-368 

�9 Springer-Verlag 1986 

Orbital-invariant formulation and second-order gradient 
evaluation in MOller-Plesset perturbation theory 

Peter Pulay and Svein SaebO* 

Department of Chemistry, The University of Arkansas, Fayetteville, AR 72701, USA 

(Received September 28/Accepted October 10, 1985) 

Based on the Hylleraas functional form, the second and third orders of 
M011er-Plesset perturbation theory are reformulated in terms of arbitrary (e.g., 
localized) internal orbitals, and atomic orbitals in the virtual space. The results 
are strictly equivalent to the canonical formulation if no further approxima- 
tions are introduced. The new formalism permits the extension of the local 
correlation method to M011er-Plesset theory. It also facilitates the treatment 
of weak pairs at a lower (e.g., second order) level of theory in CI and coupled 
cluster methods. Based on our formalism, an MP2 gradient algorithm is 
outlined which does not require the storage of derivative integrals, integrals 
with three external MO indices, and, using the method of Handy and Schaefer, 
the repeated solution of the coupled-perturbed SCF equations. 
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1. Introduction 

The simplest theoretical methods for the treatment of dynamical electron correla- 
tion are the low orders of M0Uer-Plesset perturbation theory [1, 2]. In particular, 
the second order of this theory (MP2) provides the simplest possible t rea tment  
for dynamical electron correlation. Although MP2 is not particularly accurate by 
today's standards, it usually recovers 80-120% of the basis set limit correlation 
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energy. It is thus well suited to estimate the magnitude of correlation effects. 
Gradients for the MP2 energy expression have been formulated by  Pople et al. 
[3], using the traditional MP2 energy expression. In the spin-adapted generator 
state formalism [4], which will be used for closed shells here, this is given by 

Ec = -  Y. (1+80) -~ E ~b ~b ~b ej). (1) K~ (4K o - 2 K / j  )/(ea+eb--ei- 
i>--j ab  

Here and further in the text i,j, k, l,... denote internal (occupied) orbitals, 
a, b, c, d , . . .  external (virtual) ones, and 

K~b=(ialjb)= f f i(1)a(1)r~'j(2)b(2) drl dr2. (2) 

The e's denote Hartree-Fock orbital energies. 

The fact that Eq. (1) is necessarily expressed on terms of canonical molecular 
orbitals is not advantageous in several respects. Pair correlation energies expressed 
in canonical orbitals cannot be as easily interpreted as those in localized orbitals. 
The latter provide a natural decomposition into intraorbital, adjacent interorbital 
and distant interorbital contributions, each with a clear chemical meaning. This 
decomposition is not easy to obtain using canonical orbitals. For instance, Kell6 
et al. [5] have recently analyzed correlation energies of prototype organic 
molecules in terms of bond increments, using a fit to the total M011er-Plesset 
correlation energies. A similar analysis has been given for empirical correlation 
energies by George et al. [6]. Our direct evaluation of localized contributions 
has significant advantages over such approaches. More importantly, it gives the 
correlation energy in terms of contributions from pairs of bonds rather than 
simply from bonds, which is physically much more appropriate but yields too 
many parameters to fit. 

A further motivation for the reformulation of the M011er-Plesset theory in terms 
of non-canonical orbitals was the desire to provide a simplified treatment for 
distant (or weak) interpair correlation in our local correlation treatment [7, 8]. 
In previous applications [8], these pairs were either fully included or completely 
omitted. Neither of these alternatives is completely satisfactory. Although the 
computational work in the local correlation treatment is strongly reduced com- 
pared with all singles and doubles CI, it is still substantial. It is evident that the 
weak pairs can be satisfactorily treated at the second order level, or a generaliz- 
ation theoreof. The complete neglect of the weak pairs is not justified, as the sum 
of these small dispersion contributions may be significant, up to 10% of the total 
correlation energy. In some cases, e.g. in the study of intermolecular interactions, 
these small terms constitute the effect sought. The present perturbational results 
form the basis for a simplified but accurate treatment of weak pairs and the 
dispersion force which will be published separately. 

The non-canonical formulation of MP2 theory has another advantage for the 
local CI method: it provides a good initial estimate for the CI coefficients. In 
our initial implementation [8] we have observed a somewhat poorer convergence 
than in canonical-orbital based CI. Part of this was traced to the poorer initial 
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approximation which neglected large pair coupling terms, caused by off-diagonal 
Fock matrix elements. A straightforward transformation from canonical to local 
orbitals is impossible in the local CI where each pair has its own correlation basis. 

Finally, an important objective of the present work is to simplify gradient 
evaluation in MP2 theory. The elimination of explicit reference to virtual 
orbitals obviates some computational steps present in the algorithm given by 
Pople et al. [3]. 

Perturbation theory with non-canonical orbitals (in most cases localized orbitals) 
has been used in previous work. We shall not consider methods in which the 
zeroth-order wave function is not exactly the Hartree-Fock determinant [9-11]. 
Even with the Hartree-Fock zeroth-order function, the choice of the zeroth-order 
Hamiltonian is still arbitrary [12-14], although the sum of the Fock operators 
(M011er-Plesset theory) is the overwhelmingly used choice [1, 2]. 

Our goal is to develop a perturbation theory based on localized orbitals which 
is exactly identical with the customary M011er-Plesset theory. In variational CI 
as well as in coupled-pair methods localized internal orbitals do not create any 
principal difficulty and have used occasionally [15-17]. In particular, Kutzelnigg 
has analyzed the behavior of various correlation schemes under localization [ 18]. 
The results obtained do not depend on the unitary mixing of the internal orbitals 
in variational CI, CPMET, L-CPMET [19] and ACCD [20, 21]. Robb [22] has 
given a formulation of the many-body perturbation theory in which the zeroth- 
order Hamiltonian is modified by projection operators to have localized one- 
electron eigenfunctions. The results obtained are similar to but not identical with 
the canonical results. Recently Kapuy et al. [23] have derived a diagrammatic 
formulation of many-body perturbation theory, using localized orbitals. The use 
of non-canonical orbitals gives rise to new diagrams which are given through 
fourth order. As their model results show, the localized results in a given order 
of perturbation theory are still inferior to the canonical ones. For example, in 
the limit of weak correlation (beta = -10), fourth-order canonical MBPT recovers 
about 99.5% of the exact correlation energy while the analogous localized form 
gives only =90%. If the localization diagrams are neglected, the result deteriorates 
further to -~80%. 

We have not attempted a detailed comparison of our method with Kapuy's theory 
[23]. It seems evident, however, that our method is a generalization of the latter, 
in which the localization diagrams are summed up to infinite order. The main 
result of the present work is probably that it is possible to accomplish this with 
a small amount of extra work, at least to third or partial fourth order; generaliz- 
ation to full fourth order appears to be also possible. 

2. Theory 

The starting point of our considerations is the Hylleraas functional form of the 
second-order energy [24]. For real functions this is given by 

E2 = 2(~ , [H - Eo[~o) - ( ~ l l H o -  Eo]~l) = min. 
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Here ~o and ~ are the zeroth- and first-order wave functions, Ho is the zeroth- 
order Hamiltonian, and Eo is the corresponding energy. The functional form of 
this expression facilitates the evaluation of response properties. 

In M011er-Plesset theory with a closed-shell reference function, Ho is the sum of 
one-electron Fock operators, and, using the efficient generator state matrix formu- 
lation [4, 25], the above expression becomes 

E 2 :  ~ eft, 
i>-j 

e 0 = 2(Kfr + (FCoS~i) + (SCoFfs) - ~ [Fik(SCkjS4i ) q- Fkj(SCikSCji) ]. (3) 
k 

The matrix notation used here is the same as in [4] which is, in turn, a modification 
of the SCEP method [26]. Matrix-formulated CI programs have been developed 
Dykstra [17], Werner, Reinsch and Meyer [27], Ahlrichs [28], and Saunders [29]. 
In Eq. (3), the brackets () denote a matrix trace, the superscript * indicates a 
matrix transpose, K is defined in Eq. (2), S is the overlap matrix and F is the 
Fock matrix. Following the SCEP philosophy, the matrix indices may correspond 
to arbitrary non-orthogonal functions which span the virtual space. They can be 
expressed directly in AO basis functions, in which case the dimension of the 
matrices is somewhat larger and the strong orthogonality condition [26] must 
hold for the CI coefficients C. C~ is the coefficient of the generator state function 
as defined in [4]: 

~t t Sot s t g? ~t s =qb 0 +qbrf+qb O+cb~f. 

and the contravariant coefficient matrix C 0 is defined as 

~'0 = (1 + 80)-~[4Cf - 2  Cj~]. 

with 

Straightforward differentiation of the quadratic second-order energy expression, 
Eq. (3), leads to the following equation for the MP2 residuals 

2 T o - K o + FC~S + S C o F - Y ,  S[F, kCkj + FkjC, k]S = 0. (4) 
k 

This equation can be solved iteratively, in complete analogy to the SCEP method 
[26]. The resulting correlation energy is identical with the canonical MP2 result. 
At convergence, the quadratic energy expression, Eq. (3), yields the same pair 
energies e 0 = ( ( K i j  4- T~)4i  ) as the more customary linear energy expression does 

E2 = E (Kf~,).  (5) 
i>_j 

Evaluation of the more accurate quadratic energy expression 

E3 = X ( (Ko+Tf )~ , )  (6) 
i>_j 
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yields the M011er-Plesset third order energy. Here T 2, the second-order residual, 
has been replaced by the full doubles residual T (the doubles part of Eq. (32) 
in [4]): 

T o. = K o + K ( C o )  + F C o S  + S C o F  + Qo S + SQ~, + S (  G o + G*j,)S, (7) 

where 

Qo = Y~ [(Kik -- 0.5d~k)(2 C~j - C;k) - 0.5d~kC~k -- d~kC~k], ' (7a) 
k 

Go = E (1 + ~kt)- l[ ( ik l  j l )  -- 3oFik -- ~k, Fjt]Ckt. (7b) 
k ~ l  

The off-diagonal Fock matrix elements in Eq. (7b) introduce a significant coupling 
between pair correlation functions, even at the second-order level. The neglect 
of these contributions in IEPA (Independent Electron Pair Approximation) [14] 
is probably responsible for the fact that, contrary to intuitive expectation [18], 
IEPA deteriorates if localized orbitals are used. 

In our local correlation program, the zeroth step is the iterative calculation of 
the local MP2 energy. In the first iteration step, the residuals, Eq. (7) are evaluated; 
substituted into the quadratic energy expression, Eq. (6), these yield the MOiler- 
Plesset third-order energy. It is possible to improve the doubles (as well as the 
singles) CI coefficients using the first-order residuals, and calculate a partial 
fourth-order energy with little extra work [30]. We omit this step because it 
inteferes with the efficient conjugate gradient-type convergence accelerator. In 
the first iteration step, the latter amounts to an overall scaling of the correlation 
function, and, as can easily be shown, yields the [2/1] Pad4 approximant. 

We now return to the approximate treatment of weak pairs in correlation theories. 
It must be emphasized that only localized theories have weak pairs; in canonical- 
based theories it is usually not possible to identify weak pairs. A practical 
definition of weak pairs is that the MP2 pair correlation energy does not exceed 
3 mEh. Our starting point is the functional form of the coupled-cluster doubles 
theory or an approximation to it: 

Ec= E ((go+ (8) 
i-->j 

Here v 0 depends on the many-body method used: it is omitted in L-CPMET 
[19], and it is eoC o in CEPA-2 [15]. For CPMET [19] or ACCD [20, 21] v 0 is 
more complex; a concise form in the generator state formalism was given in [4]. 
Minimization of Eq. (8) with respect to the CI coefficients yields correlation 
energies which are practically identical with conventional many-body results for 
CEPA-2 [31] and for ACCD [32], even though these methods cannot be cast 
exactly in functional form. We would like to retain the functional form in the 
approximate theory for weak pairs, for the ease of gradient and other response 
property evaluation. 

The simplest approximation for the weak pairs is the replacement of the weak 
pair energies in Eq. (8) by the second-order expression, Eq. (3). This amounts 
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to the neglect of all couplings between weak pairs as well as those between weak 
and strong pairs which are not present at the MP2 level. A much better approxima- 
tion is obtained if the couplings between the weak and strong pairs, as well as 
certain diagonal type contributions which are phase-matched and therefore impor- 
tant, are retained in the T's. Implementation of these schemes is underway in 
our laboratory and will be reported separately [33]; preliminary results are very 
promising. An advantageous feature of these methods is that the functional form 
of the correlation energy is retained. 

It must be pointed out that the calculation of MP2 energies is non-canonical 
form is in itself not superior to the traditional method; because of the extra 
computational steps involved, it is likely that it is somewhat less efficient, although 
the difference is not large, as much of the computation is spent in the integral 
transformation section. There are three aspects in which the proposed method 
isuseful. First, it can be used in the local basis set approximation [7, 8]. Second, 
it allows the simplified treatment of weak pairs in accurate correlation calculations. 
Third, it suggests ways by which the efficiency of the MP2 gradient calculation 
can be improved. 

3. Second order energy gradients and dipole moments 

The second-order correlation energy can be written as e(I, C, U) where I denotes 
the set of primitive AO integrals, C the correlation coefficients, and U the 
coefficients of the occupied SCF orbitals. The energy gradient has three contribu- 
tions, A, B and C, originating respectively from the derivatives of the integrals, 
correlation coefficients and the SCF coefficients. The first of these can be written 
as 

x A = E  (Oe/OIp)Ip 
p 

where the superscript x denotes differentiation with respect to one of the nuclear 
coordinates. It is useful to treat separately the most important term, A1, arising 
from matrix traces of the form (KqCji): 

A1 =2  2 (pqlrs) ~ E Up, UoC~ ~ 
p q r s  i >--j 

= y, (pqlrs)XY,[UpiUoCq~+ ps 
p~- -q  r ~ s  p q ~ r s  ij 

x q s  q r  p r  =~ (pq]rs) [Cp~+ p~ cqr + cp~ + cq~]. (9) 

The bracketed term in Eq. (9) is the dominant component of the second-order 
density matrix in AO basis for the MP2 correlation energy. It can be efficiently 
evaluated by rearranging the coefficients C~ q to form matrices in the lower 
(internal) indices. The transformation to the coefficients in the AO basis [denoted 
by c in Eq. (9)] can then be efficiently performed as a series of matrix multiplica- 
tions. Using an intermediate array, the computational effort of this step is 
proportional to r /2N 3 and n3N 2 where n and N denote the number of occupied 
and virtual orbitals, respectively. 
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Calculation of the remaining contributions from integral derivatives is almost 
trivial as it requires only the evaluation of Fock matrix elements built from 
integral derivatives instead of the integrals themselves. Denoting these matrices 
by F x, these terms are given by 

A2 = Y,~j [((F~CoS + FC~S~) (4Cj, - 2Co)) - Ek (FTk(SCkjS(4Cj, - 2Co)) 

+ F,k((S~CkjS + SCkjSX)(4C, j  - 2C j,))) ]. (10) 

Note that F ~ is not equal to the true derivative of the Fock matrix, as the latter 
contains contributions from the derivatives of the orbitals. Note also the unrestric- 
ted summations in Eq. (10). 

The most important computational feature of this stage of the proposed algorithm 
is that no storage of the derivative integrals is needed. The latter is a part of the 
algorithm used in the GAUSSIAN program system [3]. However, as pointed out 
earlier [34], this is likely to be a bottleneck in larger calculations. 

The contributions from the correlation coefficients appear to vanish at first, as 
the energy expression, Eq. (3), is minimized with respect to the C's [35]. There 
are, however, contributions arising from the strong orthogonality condition: 

CSU = C*SU = O. 

In the AO basis, this condition is violated at neighboring geometries if the 
correlation coefficients C are kept constant. Instead of the usual Lagrangian 
multipler method, we can restore strong orthogonality explicitly by defining 
suitable coefficient derivatives C x, in the spirit of  the first author's formulation 
of the SCF gradients [30]. C ~ is not uniquely defined, as an infinitesimal change 
in the coefficients in the virtual space has no first-order effect on the energy, by 
virtue of the minimum property. A simple solution is 

C~j = V*C~j + C~jV (11) 

where 

V = -SUXU * - SxUU *. 

A similar expression was recently introduced by Jasien and Dykstra [36]. In their 
formula V = SUU x*. This does not contain the derivative of the overlap matrix 
term, as they consider electrical properties where it is usual to assume that the 
basis set is independent of the perturbation. The sign reversal follows from the 
interchange of the order of U and U x. More important is the fact that, as our 
derivation shows, it is sufficient to consider only the occupied block of the SCF 
coefficient matrix U in the construction of C x. Jasien and Dykstra use the whole 
(occupied plus virtual) transformation matrix; their formula yields identically 
zero for C ~ if only the occupied block of U is used. 

The contribution of the second term (CI coefficient derivatives) to the gradient is 

T 2 ~ x 2 -t x 2 B = 2 ~ , > ~ j ( 0 C j , )  = E,~>j ( l+~u)  (Cj,(4T,j-2T2,)) �9 (12) 
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Note that T 2 in the AO basis does not vanish at convergence; only its projection 
in the virtual space vanishes. The calculation of the whole T 2 is only insignificantly 
more work than the calculation of its virtual components only. Equations (11, 12) 
show that the second contribution also arises from the change of the internal 
orbitals with the geometry, and can thus be treated together with the third 
contributions. 

The latter, denoted by D, has terms arising from the derivatives of the internal 
exchange operator K, and the Fock matrix elements. The first of these, D1, is 
computationally the most significant and, using the singly transformed integrals 
which are available from the MP2 procedure, can be calculated as 

D I =  2 Y~ [ Y. ( p q , j s ) ( 2 c q s - c ] s ) ]  xUp,. (13) 
p,i jqs 

This expression shows that the extended set of transformed integrals (ac I bj) is 
not required in the derivative evaluation if both the correlation coefficients C 
and the SCF coefficient derivatives X ~ are expressed in AO basis. It can be 
obtained in a different way by transforming the gradient expression, given by 
Pople et al. [3] to AO basis. 

There are two more terms in the gradient expression, originating from the 
derivatives of the Fock matrix elements in Eq. (3). The first of these, arising from 
matrix traces like (FC~S~i), is given by 

D2= Y, U~k2 [ Gpq~k ~, ( CvS~i + C~SC'ij)qp, (14) 
lqr pq i>--j 

where 

Gpqrk = 4(pql rk ) - (prl qk ) - ( qrlpk). 

The final contribution in the gradient comes from the Fig type terms in Eq. (3). 
Note first that these terms can be written with unrestricted summations as 

Y~ FIk ( S CkjS ( 4 Cji - 2 Cq ) ) = E F~k N~k, 
ijk ik 

where Nik = ~j (SCkjS~i). 

The contribution of this expression to the MP2 gradients is 

D 3 = ~  [ ~ .  Gik, rlUrXl+~(FrkUrXi-l-FirUrXk]Nik, r (15) 

The sum of B, D1, D2 and D3 can be represented as 

BD = • Ur~ Yr, (16) 
ri 

where Yri is the sum of the coefficients of Uri in these four terms. In the traditional 
approach, the orbital derivatives U x are evaluated for all perturbations ~, and 
contracted with the corresponding Y matrix elements. The expensive part of this 
calculation is the repeated solution of the coupled-perturbed Hartree-Fock 
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equations.  This can be avoided by using the ingenious method  in t roduced very 
recently by  H a n d y  and Schaefer [37]; for another  appl icat ion o f  the same idea, 
see Adamowicz  et al. [38]. Handy ' s  device can be used to accelerate the MP2 
gradient  evaluation. Briefly, the orbital derivatives, written in a vector  form as 
u ~, are the solutions o f  a large linear system of  equat ions in which the left-hand 
side is the same for all perturbations:  

A u  ~ = b ~. 

In  the vector  form, Eq. (16) is written as 

BD = y* u ~ = (y* A - 1 ) b  ~ = ( A * - l y )  * b ~. (17) 

Therefore a single solution o f  a linear system of  equations,  with A* on the 
left-hand side, suffices to evaluate the derivatives. 

The MP2 gradient  algori thm described here has not  yet been implemented.  It is 
expected that  its implementat ion will significantly speed up the MP2 gradient 
algorithm. This is impor tant  because the bulk o f  the correlat ion correction is 
recovered at the second-order  level. 

The funct ional  form of  the second-order  energy  is advantageous  in defining other 
response properties,  e.g. dipole moments  [39]. The formulas given for the gradient 
are greatly simplified in this case, if, as usual, the basis set is chosen independent  
o f  the perturbation,  for instance an external electric field. All two-electron integral 
derivative contributions vanish then, and the only terms remaining are the 
contr ibutions f rom the dipole operator  d and the SCF orbital derivatives U x. 

Table 1. Localized correlation energy contribution in ethylene a 

Pair MP2 MP3 CEPA-2 ACCD 

hh 18.768 22.193 23.507 23.216 
bb 20.266 22.760 24.811 23.690 

Intraorbital 115 .604  134 .292  143 .650  140.244 

hh' (gem) 10.130 10.572 10.620 10.372 
hh' (cis) 0.985 0.968 0.949 0.919 
hh' (trans) 1.124 1.099 1.091 1.055 
hb 10.478 10.637 10.637 10.308 
bb' 27.716 28.436 29.247 27.820 

Interorbital 136 .018  138 .813  139 .659  134.976 

Total 251.621 273 .105  283 .309  275.219 

a Nuclear coordinates in .~ units: C (• 0, 0), H (• 
• 6-31G* basis set, five-component d functions. The 
C--H localized orbitals are denoted by h, the C--C (banana) orbitals 
by b. Correlation energies (with negative sign) in millihartrees (1 E h ~- 
4.359814 aJ) 
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T h e  first  is 

( d A )  - ~ d ik(SCk:(4C) ,  - 2Co) ) ,  
Ok 

a n d  the  s e c o n d  is g i v e n  b y  Eqs .  ( 1 1 ) - ( 1 5 ) ,  t h e  o n l y  c h a n g e  b e i n g  t h a t  n o w  S x = 0. 

T h e  o rb i t a l  d e r i v a t i v e  t e r m s  a re  o f t e n  o m i t t e d  f o r  C I  w a v e  f u n c t i o n s ,  a l t h o u g h  

t h e i r  c o n t r i b u t i o n  m a y  b e  s ign i f i can t  [40, 41]. 

Table 2. Localized correlation energy contributions in puckered 
oxetane a 

Pair MP2 MP3 ACCD 

n 15.940 17.292 17.683 
n' 16.051 17.492 19.904 
CO 20.893 22.700 23.310 
CC 20.279 22.849 23.352 
h 1 18.689 22.131 23.168 
h 2 18.635 22.052 23.087 
h 5 18.238 21.505 22.487 
h 6 18.308 21.601 22.583 
Total intraorbital 225.529 2 5 7 . 3 5 4  266.491 

n, n' 20.120 19.722 19.439 
n, CO 19.727 18.788 18.313 
n', CO 19.020 18.145 18.313 
CO, CO' 18.567 17.251 17.697 
CO, h 1 7.482 7.607 7.405 
CO, h 2 7.529 7.645 7.441 
hi, h 2 10.236 10.671 10.436 
CO, CC 7.933 8.053 7.836 
hi, CC 9.911 10.259 9.987 
he, CC 10.113 10.446 10.162 
CC, CC' 10.908 11.164 10.845 
CC, h 5 10.249 10.530 10.244 
CC, h 6 10.058 10.351 10.069 
hs, h6 10.347 10.699 10.449 
Strong interorbital 284.458 2 8 3 . 8 2 6  276.602 

Weak interorbital 35.400 32.960 31.797 

Total 545.387 5 7 4 . 1 4 0  574.892 

a6-31G* basis, geometry 0.72rad puckered (see Banhegyi Gy, 
Pulay P, Fogarasi G (1983) Spectrochim Acta 39A:761. Five- 
component d functions have been used, all energies in milli- 
hartree~, n and n' denote the upper and lower O lone pairs, CO 
and CC the corresponding bonding pairs, h I and h 2 are the upper 
and lower alpha C--H bonds, h 5 and h 6 a r e  the upper and lower 
beta C- -H bonds. The local basis set consists ofthe valence AO's 
of the atoms on which the orbitals are localized. In the interorbital 
case, the union of the two local basis sets is used 
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3. Results 

Table 1 shows the localized pair energies for ethylene at the MP2, MP3 [1, 2], 
CEPA-2 [15] and ACCD [20] levels, using the 6-31(3" basis set [42]. The fast 
Boys localization [43] was used in all calculations presented here. In the future, 
we plan to compare these results with those obtained using other localization 
criteria, in particular with the Edmiston-Ruedenberg method [44]. It is interesting 
to note that while the MP2 intraorbital correlation energies are quite poor (the 
total intraorbital correlation energy at the MP2 level is 82.4% of the ACCD 
value), the interorbital ones are much closer to the more accurate ACCD model. 
The total third-order correlation energy is a good approximation to the ACCD 
energy. However, this is a result of cancellation: MP3 overestimates the inter- 
orbital correlation energies and underestimates the intraorbital ones. 

Results for puckered oxetane (trimethylene oxide) using the local correlation 
basis set approximation [7, 8] are shown in Table 2. We have repeated the MP2 
calculations using the "full basis set: this yields a total correlation energy of 
-556.568 mEh, i.e. the local basis set recovers 97.99% of the full basis set MP2 
energy. As pointed out in our paper [8], most of this difference can be attributed 
to the elimination of the intramolecular basis set superposition effect, and is thus 
beneficial. The trends are very similar to the ethylene case. MP2 suffers from a 
significant underestimation of the intraorbital correlation contributions while 
MP3 mildly underestimates the intraorbital and overestimates the interorbital 
terms, giving an overall good agreement in the total correlation energy as com- 
pared with the more sophisticated ACCD model. Two conclusions emerge from 
the above. First, a moderately accurate but inexpensive correlation method can 
be defined in which the localized intraorbital terms are treated at the MP3 level 
and all other terms at the MP2 one. Second, the total correlation energy may be 
a very misleading indicator of the convergence properties of MOller-Plesset 
perturbation theory. 
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Note added in proof 

After the submission of this paper, the paper of Handy et al (Handy NC, Amos RD, Gaw JF, Rice 
JE, Simandiras ED (1985) Chem Phys Lett 120:151) appeared. This paper describes a new algorithm 
for the evaluation of the first and second derivatives of MP2 energy. Their gradient algorithm is quite 
similar to the one described in our paper. 


